Spark Plasma Sintering: A Useful Technique to Develop Large-Sized Bulk Metallic Glasses
نویسنده
چکیده
Metallic glasses exhibit unique combination of physical, chemical and mechanical properties due to their amorphous nature which lacks long range order and defects such as grain boundaries and dislocations [1,2]. In the past two decades, they have been rapidly developed for application in many fields. However, the disadvantages such as poor plasticity and limited dimensions hamper their large-scale industrial applications [3,4]. The most common method to improve plasticity of the monolithic bulk metallic glasses (BMGs) is to produce glassy composites by introducing nanoor micro-scale crystalline phases into the metallic glassy matrix [5-9]. On the other hand, intensive efforts have been made to overcome dimension limitation. Powder metallurgy process is an alternative route to produce large-size metallic glassy alloy parts. It is also favor to fabricate the glassy composites by dispersing crystalline particulates into the glassy matrix. Spark plasma sintering (SPS) as a newly developed rapid sintering technique, has a great potential for producing glassy composites while crystallization of the glassy alloy and coarsening of the dispersed particles are avoided. Furthermore, it is also a type of solid-state compression sintering technique which is similar to hot pressing sintering process, so that the sintered samples with the large-size and complicated shape can be produced [10,11].
منابع مشابه
Recent Progress in Ti-Based Metallic Glasses for Application as Biomaterials
Ti-based bulk metallic glasses are of great interest in biomedical applications due to their high corrosion resistance, excellent mechanical properties and good biocompatibility. This article reviews recent progress in the development of Ti-based metallic glasses for the application as biomaterials. Ti-based (TiZrCuPd, TiZrCuPdSn, and TiZrCuPdNb) bulk metallic glasses without toxic a...
متن کاملFabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملLow temperature spark plasma sintering of YIG powders Authors: L. Fernandez-Garcia
A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 oC calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 oC leads to dense samples with minimal formation of YFeO3, opening the way to cosintering of YIG with metals or metallic alloys. The optical properties depe...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کاملFriction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering
Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...
متن کامل